

Exame Final Nacional de Biologia e Geologia Prova 702 | 2.ª Fase | Ensino Secundário | 2022

11.º Ano de Escolaridade

Decreto-Lei n.º 55/2018, de 6 de julho $\,$ | Decreto-Lei n.º 27-B/2022, de 23 de março

Duração da Prova: 120 minutos. | Tolerância: 30 minutos.

15 Páginas

VERSÃO 1

A prova inclui 20 itens, devidamente identificados no enunciado, cujas respostas contribuem obrigatoriamente para a classificação final. Dos restantes 10 itens da prova, apenas contribuem para a classificação final os 5 itens cujas respostas obtenham melhor pontuação.

Indique de forma legível a versão da prova.

Para cada resposta, identifique o grupo e o item.

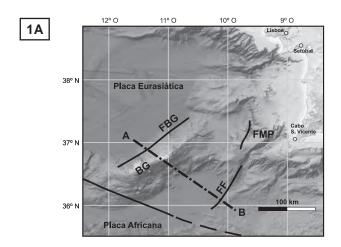
Utilize apenas caneta ou esferográfica de tinta azul ou preta.

Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado.

Apresente apenas uma resposta para cada item.

As cotações dos itens encontram-se no final do enunciado da prova.

Nas respostas aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o grupo, o número do item e a letra que identifica a opção escolhida.


Texto 1

O Banco de Gorringe (BG) é uma montanha submarina, localizada a SO do Cabo de S. Vicente, que se eleva desde os 5000 metros de profundidade até próximo da superfície do mar.

Na zona existe um sistema de falhas ativas – composto pela falha do Banco de Gorringe, pela falha Marquês de Pombal e pela falha da Ferradura, entre outras – relacionado com a deformação resultante do movimento das placas Africana e Eurasiática, no Cenozoico, durante o Miocénico (23 a 5 milhões de anos – Ma). Na Figura 1A está representado um mapa simplificado da região, e na Figura 1B está representado o corte geológico (AB) assinalado no mapa.

Litologicamente, o Banco de Gorringe é constituído por peridotitos serpentinizados, pois os minerais máficos dos peridotitos deram origem a minerais como a serpentina e o talco por um processo complexo – serpentinização – que envolve a ação de fluidos hidrotermais. Ocorrem também basaltos, formados há cerca de 148 Ma, arenitos e calcários com fósseis de foraminíferos (seres eucariontes, unicelulares, com concha), datados do Mesozoico. Todas estas formações geológicas estão cobertas por sedimentos não consolidados, depositados desde o Miocénico até à atualidade.

Dados radiométricos indicam que a crosta que constitui o Banco de Gorringe se terá formado durante as primeiras etapas da abertura do Atlântico Norte. Outros dados de investigação, como a deformação de sedimentos recentes e a sismicidade de elevada magnitude ocorrida a SO do Cabo de S. Vicente – sismos de 1755 e de 1969, entre outros –, sugerem que esteja em formação uma zona de subdução, numa fase ainda incipiente, na margem sudoeste ibérica.

BG - Banco de Gorringe

FBG - Falha do Banco de Gorringe

FMP - Falha Marquês de Pombal

FF - Falha da Ferradura

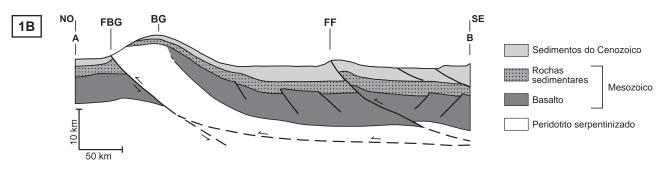
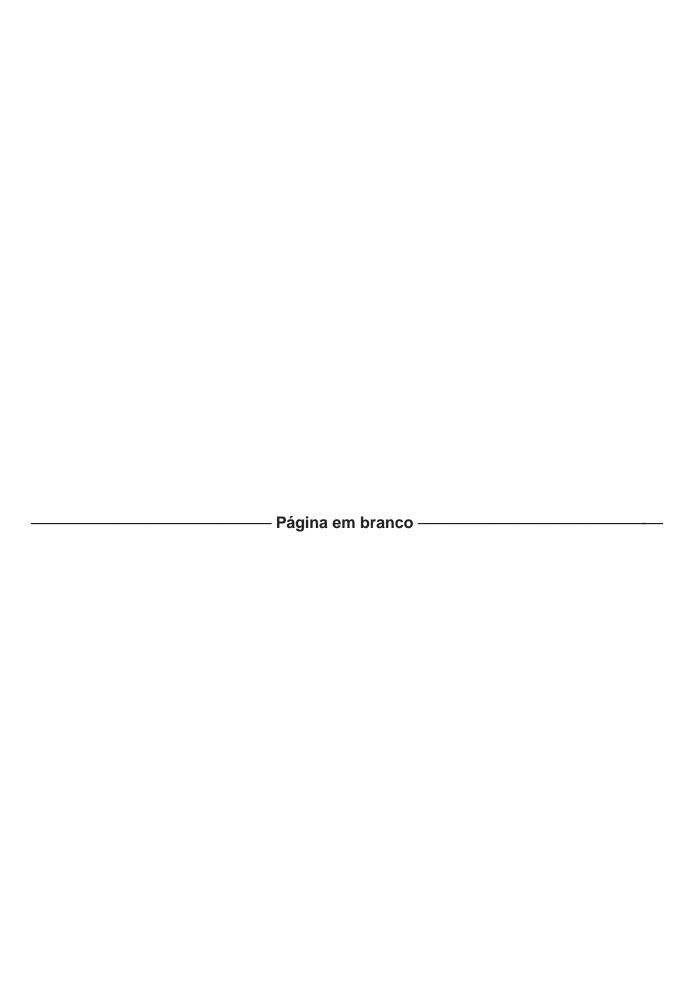


Figura 1

Baseado em: J. Duarte et al., «Are subduction zones invading the Atlantic? Evidence from the southwest Iberia margin», in *Geology*, 2013; e em: J. Girardeau et al., «Preliminary results of Nautile dives on the Gorringe Bank (West Portugal)», *Earth & Planetary Sciences*, 1998.


1. Selecione, de entre as afirmações relativas aos dados fornecidos sobre o Banco de Gorringe, as duas afirmações corretas.

Transcreva para a folha de respostas os números selecionados.

- I. Os sedimentos depositados durante o Cenozoico sofreram diagénese.
- II. Nos calcários do Mesozoico, fossilizaram organismos do reino Protista.
- III. Os sedimentos do Cenozoico estão cobertos por escoadas de basalto.
- IV. Nos arenitos do Mesozoico, foram identificados fósseis de animais.
- V. Os foraminíferos possuem células com mitocôndrias.
- * 2. No Banco de Gorringe, existem lavas basálticas em almofada. A consolidação destas lavas ocorreu
 - (A) durante episódios de vulcanismo explosivo.
 - (B) como resultado de vulcanismo numa zona de subdução.
 - (C) durante episódios de vulcanismo submarino.
 - (D) como resultado de vulcanismo numa falha transformante.
 - 3. A serpentinização dos peridotitos permite deduzir que estas rochas foram sujeitas a processos de
 - (A) metamorfismo, por ação de água a elevadas temperaturas.
 - (B) meteorização química na zona superficial, por ação da água do mar.
 - (C) erosão dos cristais de olivina, por ação das correntes marinhas.
 - (D) meteorização física, por ação do atrito nas zonas de falha.
 - **4.** De acordo com os movimentos relativos dos blocos rochosos, a falha do Banco de Gorringe e a falha da Ferradura, representadas na Figura 1B, são classificadas como
 - (A) falhas normais.
 - (B) falhas inversas.
 - (C) uma falha inversa e uma falha normal, respetivamente.
 - (D) uma falha normal e uma falha inversa, respetivamente.
- ★ 5. Ordene as expressões identificadas pelas letras de A a E, de modo a reconstituir a sequência correta dos acontecimentos relacionados com a abertura do Atlântico Norte e com a evolução da zona do Banco de Gorringe.
 - A. Deposição de sedimentos cenozoicos.
 - B. Deformação da Pangeia, em regime frágil.
 - C. Início da formação da crosta oceânica atlântica.
 - **D.** Sedimentação de carbonatos com fósseis de foraminíferos.
 - E. Formação da falha da Ferradura.

- 6. De acordo com os dados, o talco, mineral que é riscado pela unha, forma-se a partir de
 - (A) silicatos ricos em ferro e possui dureza intermédia.
 - (B) silicatos ricos em potássio e possui baixa dureza.
 - (C) silicatos ricos em cálcio e possui dureza intermédia.
 - (D) silicatos ricos em magnésio e possui baixa dureza.
- * 7. De entre as rochas seguintes, as que apresentam a menor percentagem de sílica são
 - (A) os basaltos, rochas magmáticas plutónicas.
 - (B) os peridotitos, rochas magmáticas vulcânicas.
 - **(C)** os peridotitos, rochas com origem no manto.
 - (D) os basaltos, rochas que formam a crosta oceânica.
- * 8. A região a SO do Cabo de S. Vicente apresenta grande potencial para a génese de sismos de elevada magnitude, como os de 1755 e de 1969.

Justifique a génese de sismos de elevada magnitude na região, fazendo referência ao contexto tectónico.

Texto 2

Os dois picos mais elevados do Banco de Gorringe, Ormonde e Gettysburg, foram ilhas durante a glaciação Würm (100 000 a 10 000 anos). Na atualidade, estão, respetivamente, a 48 e a 28 metros de profundidade, na zona fótica (zona até onde chega a luz).

Os montes submarinos constituem um obstáculo à circulação das correntes submarinas, provocando a subida de águas profundas, ricas em nitratos e fosfatos, importantes para o crescimento do fitoplâncton.

No Banco de Gorringe, um local com elevada produtividade primária para um contexto oceânico, existe um ecossistema único, onde se registam 862 espécies.

Pensa-se que os montes submarinos que mais se aproximam da superfície, ao proporcionarem pontos de passagem nas rotas de migração de espécies, facilitam a sua dispersão nos oceanos.

O facto de espécies das faunas mediterrânica e africana terem colonizado os arquipélagos da Macaronésia – Canárias, Madeira e Açores – deve-se, pelo menos em parte, à existência do Banco de Gorringe e a eventos paleoclimáticos que provocaram variações paleogeográficas.

Uma das muitas missões científicas ao Banco de Gorringe, a LusoExpedição (2006), recolheu diversas amostras biológicas de peixes e de invertebrados marinhos. Em laboratório, estas amostras foram sujeitas a extração de DNA mitocondrial, herdado apenas da progenitora, com o intuito de determinar semelhanças e diferenças entre os indivíduos aí recolhidos e indivíduos recolhidos noutras áreas geográficas, nomeadamente na costa mediterrânica, na costa africana e nos arquipélagos da Macaronésia.

Os resultados obtidos permitem inferir relações filogenéticas e, cruzando-os com dados paleontológicos, pode ser estimado um relógio molecular para um determinado grupo de espécies.

Baseado em: M. S. A. Correia, «Avaliação da importância, potencial e constrangimentos da designação do Banco Gorringe como Sítio de Interesse Comunitário», Dissertação de Mestrado em Ecologia Marinha, Universidade de Lisboa, Faculdade de Ciências, Departamento de Biologia Animal, 2013; e em: http://eventos.ulusofona.pt/lusoexpedicao (consultado em setembro de 2020).

- 9. Podemos inferir que, durante a glaciação Würm, o nível médio das águas do oceano Atlântico terá estado
 - (A) abaixo do nível atual, pelo menos 48 metros, facilitando a migração de algumas espécies.
 - (B) acima do nível atual, pelo menos 28 metros, enquanto os glaciares se desenvolviam.
 - (C) abaixo do nível atual, pelo menos 48 metros, acompanhando uma fase de degelo.
 - (D) acima do nível atual, pelo menos 28 metros, dificultando a migração de algumas espécies.
- **10.** Explique, com base nos dados (Figura 1, da página 2, e Texto 2), de que modo a formação do Banco de Gorringe proporcionou as condições que levaram à enorme biodiversidade desta zona.

Na sua resposta, comece por identificar a deformação que deu origem ao Banco de Gorringe.

- **11.** A escolha do DNA mitocondrial deveu-se ao facto de, na mitocôndria, a informação filogenética estar mais conservada, pois
 - (A) a recombinação génica é inexistente.
 - (B) o DNA existe em quantidade muito reduzida.
 - (C) o DNA está protegido por uma dupla membrana.
 - (D) a transcrição ocorre na matriz mitocondrial.
- 12. A Figura 2 representa um exemplo de uma árvore filogenética.

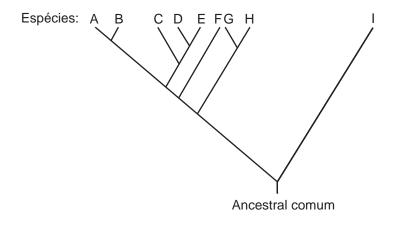


Figura 2

- * 12.1. Na árvore filogenética representada na Figura 2, as bifurcações significam que
 - (A) membros de duas espécies diferentes se podem cruzar livremente na natureza.
 - (B) é sempre possível a existência de uma convergência num grupo filogenético.
 - (C) se verificam fenómenos de convergência e de divergência ao longo da evolução.
 - (D) espécies com características diferentes partilham planos anatómicos semelhantes.
- *** 12.2.** Selecione, de entre as afirmações relativas à análise da árvore filogenética da Figura 2, as duas afirmações corretas.

Transcreva para a folha de respostas os números selecionados.

- I. Há maior grau de parentesco entre os seres F e G do que entre os seres G e H.
- II. As espécies C e E divergiram há mais tempo do que as espécies A e B.
- III. O ancestral comum às espécies A, B, C, D e E é mais recente do que o ancestral comum às espécies C, D e E.
- **IV.** A espécie I apresenta maior número de diferenças em relação às outras espécies do que estas apresentam entre si.
- V. As espécies que acumularam maior número de mutações em relação ao ancestral comum foram as espécies A e B.

*		Ordene as expressões identificadas pelas letr dos acontecimentos relacionados com a pro- utilização na obtenção de energia.								
		A. Redução de CO ₂ para formar compostos	orgânicos.							
		B. Produção de H ₂ O e de CO ₂ .								
		C. Oxidação da molécula de H ₂ O.								
		D. Formação de moléculas de ácido pirúvico).							
		E. Fosforilação da glucose.								
*	14.	A produção de moléculas de ATP em vias me	etabólicas de baixo rendimento	o energético requer						
		(A) a degradação da glucose em condições	aeróbias.							
		(B) a produção de lactato, na mitocôndria.								
		(C) a ocorrência do ciclo de Krebs.								
(D) a intervenção de transportadores de eletrões.										
Transcreva para a folha de respostas cada uma das letras, seguida do número que corresponde selecionada. A cada letra corresponde um só número. Nos picos do Banco de Gorringe, existem recifes de corais. Estes animais, semelhantes à são seresa) _ queb) _ e que possuem digestãoc) Os fósseis de corais associados ad) _ formados em paleoambientese)										
		a)	b)							
		eucariontes multicelulares	não possuem sistema de transporte							
		2. eucariontes unicelulares	2. possuem sistema de trar	transporte aberto						
		3. procariontes coloniais	3. possuem sistema de trar	nsporte fechado						
		c)	d)	e)						
		exclusivamente intracelular	1. arenitos	1. fluviais						
		2. exclusivamente extracelular	2. argilitos	2. marinhos						
		3. extracelular e intracelular	3. calcários	3. lacustres						

*	•	16. O Banco de Gorringe contribuiu para que algumas espécies de aves da costa mediterrânica e da costa africana atingissem os arquipélagos da Macaronésia.
		Explique de que modo esta hipótese pode ser apoiada pelos contextos paleoclimático e paleogeográfico, referidos no Texto 2, e por estudos de DNA de espécies dos arquipélagos e de espécies dos continentes.

Texto 3

Os recifes de corais têm vindo a declinar nas últimas décadas, devido a impactos ambientais locais e regionais. A doença da banda branca – WBD (white band disease) – tem contribuído para a redução dramática das populações de Acropora cervicornis e de Acropora palmata desde 1970, estando estas duas espécies de corais na lista vermelha da União Internacional para a Conservação da Natureza.

Os corais estabelecem relações simbióticas com algas e com bactérias. No entanto, estudos recentes indicam que a doença pode ser causada por algumas bactérias. Para testar esta hipótese, foi efetuado em *A. cervicornis* o estudo experimental seguinte:

- Colocaram-se «ramos» de corais saudáveis (ND) e «ramos» de corais com doença (WBD) em cinco aquários, contendo igual volume de água do mar extraída do local de proveniência desses corais.
- Mantiveram-se os corais nos aquários por um período de 24 horas antes do início da experiência, para aclimatação e para posterior monitorização da progressão das lesões.
- Adicionaram-se a três dos aquários três antibióticos diferentes, a cada 12 horas, em dosagens iguais.
- Os três antibióticos utilizados foram previamente testados em bactérias e em corais saudáveis, administrando-se uma dosagem já estabelecida.
- Fizeram-se avaliações do efeito da aplicação dos antibióticos 2 vezes por dia, às 10 horas e às 16 horas, durante os 6 dias da experiência.

O Quadro I apresenta as condições experimentais existentes em cada aquário.

Quadro I

Aquário	Condições existentes em cada aquário							
1	Corais saudáveis (ND) sem adição de antibiótico.							
2	Corais com doença (WBD) sem adição de antibiótico.							
3	Corais com doença submetidos a tratamento com 100 µg mL ⁻¹ do antibiótico ampicilina (amp), que impede a formação da parede bacteriana.							
4	Corais com doença submetidos a tratamento com 100 µg mL ⁻¹ do antibiótico metronidazol (met), que intervém na desativação de enzimas necessárias à respiração anaeróbia.							
5	Corais com doença submetidos a tratamento com 100 µg mL ⁻¹ do antibiótico paromomicina (para), inibidor da síntese proteica.							

Os resultados estão expressos na Figura 3, onde a progressão da doença está evidenciada pela extensão da mancha branca, e no Gráfico I, que apresenta a quantidade total de bactérias (nocivas e não nocivas) detetadas nos cinco grupos de corais, no final da experiência.

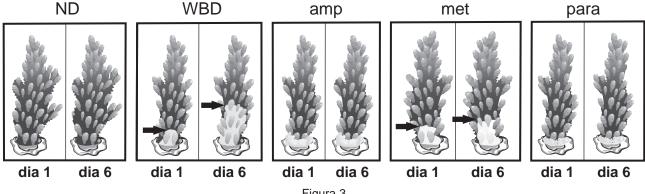
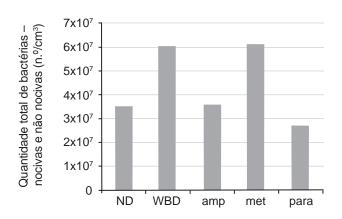



Figura 3

Gráfico I

Baseado em: M. J. Sweet, A. Croquer e J. C. Bythell, «Experimental antibiotic treatment identifies potential pathogens of white band disease in the endangered Caribbean coral *Acropora cervicornis*», *Royal Society Publishing*, 2014.

- 17. A testagem dos antibióticos nos corais saudáveis, antes da realização do estudo, teve como objetivo
 - (A) assegurar a existência de corais saudáveis para o estudo.
 - (B) verificar se os antibióticos têm efeitos adversos nos corais.
 - (C) estimar a dosagem adequada a utilizar nos tratamentos.
 - (D) impedir o crescimento das algas simbiontes.
- * 18. Os dispositivos de controlo foram os aquários
 - (A) 3 e 4.
 - **(B)** 1 e 2.
 - (C) 2 e 4.
 - (D) 1 e 3.
- * 19. Uma variável dependente neste estudo foi
 - (A) a hora a que é avaliado o efeito do antibiótico.
 - (B) o número de corais utilizados em cada tratamento.
 - (C) a quantidade de bactérias, no final, por amostra.
 - (D) o número de aplicações de antibiótico por coral.
- **20.** Justifique, com base nos resultados do estudo, a vantagem da utilização do antibiótico ampicilina (amp) em vez do antibiótico paromomicina (para) no tratamento da WBD.

Na sua resposta, deverá utilizar os dados da Figura 3 e os dados do Gráfico I.

GRUPO II

Numa aula de Biologia e Geologia, realizou-se uma atividade com o objetivo de compreender os fenómenos de transporte através das membranas.

1.ª fase da experiência:

Colocaram-se três ovos, durante três dias, em solução de vinagre (ácido acético).

Retiraram-se os ovos da solução de vinagre, limparam-se e pesaram-se.

2.ª fase da experiência:

Colocou-se cada um dos ovos num gobelé (1, 2 e 3), durante 60 minutos, nas condições seguintes:

Gobelé 1 – com 100 mL de água destilada;

Gobelé 2 – com 100 mL de solução de azul de metileno (corante);

Gobelé 3 – com 100 mL de solução de sacarose a 30% (m/V) – concentração superior à do meio intracelular.

Ao fim dos 60 minutos, retiraram-se os ovos dos gobelés, limparam-se e pesaram-se.

3.ª fase da experiência:

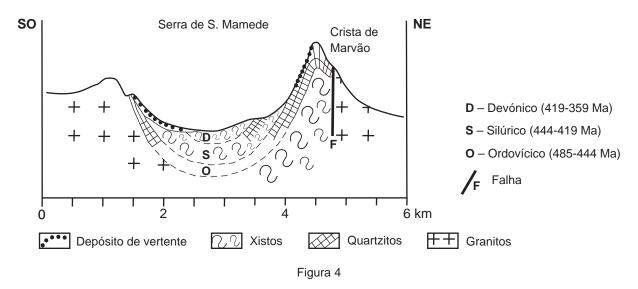
Colocou-se o ovo do gobelé 1, durante mais 60 minutos, noutro gobelé (4), com 100 mL de solução de sacarose a 30% (m/V).

Colocaram-se os ovos dos gobelés 2 e 3, respetivamente, nos gobelés 5 e 6, cada um com 100 mL de água destilada, durante 60 minutos.

Pesaram-se os ovos colocados nos gobelés 4, 5 e 6.

Nota – A casca do ovo é constituída por carbonato de cálcio.

- 1. O objetivo da utilização do vinagre na experiência foi
 - (A) permitir as trocas gasosas entre o ovo e o meio.
 - (B) proteger o ovo de contaminações por microrganismos.
 - (C) promover a dissolução da casca do ovo.
 - (D) diminuir a concentração de iões H+ no meio.
- 2. Na terceira fase da experiência, quando se colocou o ovo do gobelé 2 em água destilada, a água
 - (A) ficou azulada, devido à ocorrência de osmose.
 - (B) ficou azulada, devido à ocorrência de difusão.
 - (C) manteve-se incolor, devido à ocorrência de difusão facilitada.
 - (D) manteve-se incolor, devido à ocorrência de transporte ativo.
- * 3. Preveja e explique a variação da massa do ovo, inicialmente colocado no gobelé 1, durante as 2.ª e 3.ª fases da experiência.


GRUPO III

A serra de S. Mamede, localizada na região de Portalegre, é o principal conjunto montanhoso do Alto Alentejo, elevando-se até à altitude de 1025 metros.

Esta serra resultou de um conjunto de processos de deformação e de erosão, que conduziram ao aparecimento de cristas quartzíticas que se destacam na área envolvente e se estendem na direção NO-SE, desde Castelo de Vide até à fronteira com Espanha, atingindo cerca de 40 quilómetros de comprimento. Nos quartzitos, foram identificadas pistas de locomoção de trilobites. Entre as cristas quartzíticas afloram xistos do Silúrico e do Devónico.

A crista quartzítica de Marvão está incluída no Inventário de Geossítios de relevância nacional.

A Figura 4 representa esquematicamente um corte geológico de direção SO-NE na região de Marvão.

Baseado em: M. Feio e G. Almeida, «A serra de S. Mamede», Finisterra, janeiro de 1980.

- 1. O corte da serra de S. Mamede, representado na Figura 4, apresenta uma estrutura que, de acordo com a forma e com a idade relativa dos estratos, pode ser classificada como
 - (A) antiforma, uma vez que o núcleo é formado por rochas mais antigas.
 - (B) anticlinal, uma vez que o núcleo é formado por rochas mais recentes.
 - (C) sinforma, uma vez que o núcleo é formado por rochas mais antigas.
 - (D) sinclinal, uma vez que o núcleo é formado por rochas mais recentes.
- * 2. Os quartzitos que deram origem às cristas na serra de S. Mamede são rochas com textura
 - (A) não foliada e resultaram do metamorfismo de arenitos.
 - (B) foliada e estão associados a tensões não litostáticas.
 - (C) foliada e apresentam um comportamento frágil.
 - (D) não foliada e contêm baixa percentagem de sílica.

- * 3. Os granitos são rochas formadas
 - (A) por associações mineralógicas que incluem feldspatos potássicos.
 - (B) a partir de magmas que arrefecem muito rapidamente.
 - (C) a partir de magmas com elevada percentagem de ferro.
 - (D) por elevada percentagem de minerais da série descontínua de Bowen.
- **4.** Selecione, de entre as afirmações relativas às rochas e aos fósseis identificados na região da serra de S. Mamede, as duas afirmações corretas.

Transcreva para a folha de respostas os números selecionados.

- **I.** As pistas de locomoção das trilobites, identificadas nos quartzitos, indiciam que o *habitat* destes organismos era um mar pouco profundo.
- **II.** De acordo com o princípio do atualismo, as trilobites deveriam possuir células eucarióticas com parede celular.
- **III.** Uma determinada espécie de trilobites pode ser considerada fóssil de idade se apresentar pequena distribuição estratigráfica e ampla distribuição geográfica.
- **IV.** As rochas plutónicas da Figura 4 são melanocráticas devido à abundância relativa de minerais félsicos na sua composição.
- V. Os xistos do Silúrico que afloram na serra de S. Mamede indiciam a existência de ambientes de sedimentação com elevado hidrodinamismo.
- * 5. Associe aos tipos de metamorfismo, apresentados na Coluna I, as características da Coluna II que lhes correspondem.

Cada um dos números deve ser associado apenas a uma letra, e todos os números devem ser utilizados.

Escreva na folha de respostas cada letra da Coluna I, seguida do número ou dos números (de 1 a 7) correspondente(s).

COLUNA I	COLUNA II							
	(1) Dá origem a corneanas.							
	(2) Origina rochas que reagem com os ácidos.							
(a) Apenas o metamorfismo de contacto	(3) Resulta, predominantemente, da ação conjugada da temperatura e da circulação de fluidos.							
(b) Apenas o metamorfismo regional	(4) Resulta da ação de pressões dirigidas.							
(c) Qualquer um dos tipos de	(5) Está na origem de rochas com uma textura bandada.							
metamorfismo	(6) Conduz à recristalização de minerais no estado sólido.							
	(7) Provoca foliação numa direção perpendicular às tensões.							

★ 6. Explique a formação das cristas quartzíticas da serra de S. Mamede, considerando a evolução geodinâmica da região e a litologia daqueles relevos.

Na sua resposta, deve fazer referência à génese dos quartzitos.

COTAÇÕES

	Grupo I																			
As pontuações obtidas nas respostas a estes	2.	5.	7.	8.	10.	12.1.	12.2.	13.	14.	15.	16.	18.	19.	20.						
20 itens da prova contribuem	Grupo II													Subtotal						
obrigatoriamente para	3.																			
a classificação final.		Grupo III																		
	2.	3.	4.	5.	6.															
Cotação (em pontos)							20 x 8	pontos	3						160					
	Grupo I																			
Destes 10 itens, contribuem	1.	3.	4.	6.	9.	11.	17.													
para a classificação final da	Grupo II									Subtotal										
prova os 5 itens cujas respostas	1.	2.													Subtotal					
obtenham melhor pontuação.	Grupo III																			
	1.																			
Cotação (em pontos)	(em pontos) 5 x 8 pontos								40											
TOTAL								200												

Prova 702 2.ª Fase VERSÃO 1